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Abstract 

We discuss the problem of designing a quantum computer based on one-dimensional "alternating" Ising systems (linear chains 
with periodically recurring spin groups) in an external magnetic field which exceeds the interaction between spins. Loading and 
processing of information in the alternating Ising system may be accomplished by using a scheme suggested recently by Lloyd 
for heteropolymer systems. The detailed operation of a simple quantum logical device is described in the framework of a binary 
Ising system. Estimates of physical parameters are presented that show that the experimental realization of such quantum com- 
puter elements would be feasible as a research task. However, many difficulties remain to be addressed, before the approach 
discussed here would be applicable in real devices. 

1. Introduction 

The problem of  the size l imit  of  a bi t  of  informa-  
tion is impor tant ,  both  from the fundamenta l  point  
o f  view and also for compute r  minia tur iza t ion .  Re- 
cently this p roblem has a t t rac ted  addi t iona l  at ten- 
t ion because the current  deve lopment  o f  nanotech-  
nology and design of  semiconductor  and  metal  
devices is approaching  the quan tum size l imit .  Con- 
sequently, the idea of  quan tum computers  in which 
the e lements  that  carry bits  o f  in format ion  are a toms 
has at tracted the at tention o f  many scientists [ l - 1 0  ]. 
Recently a scheme o f  dr iv ing  a quan tum compute r  
with a sequence of  laser pulses has been suggested 
[ 11 ]. We consider  in this paper  a class o f  systems 
(magnet ic  one-dimensional  a l ternat ing Ising sys- 

tems)  which could be used as a base for future quan- 
tum computat ions .  Using the idea suggested in Ref. 
[ 1 1 ] also we es t imate  the design parameters  needed 
to implement  this idea for a quan tum computer  on 
the al ternat ing Ising systems. 

It is usually assumed that the min imal  system for 
carrying a bit  of  informat ion is an a tom with two 
states. The a tom can be populated either in the ground 
state, or in the excited state. Informat ion  can then be 
represented by a set o f  atoms, some o f  which are in 
the ground state 10),  and others in the excited state 
[ t> .  

A computer  is a set of  elements,  in which a bit  of  
informat ion can be transferred from one element  to 
another.  Each element  should perform logical opera- 
t ions - for example,  in the operat ion "not" ,  zero 
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transfers to one, and one transfers to zero. To create 
a computer, it is enough to use three main elements 
(operations), for example: "not",  "controlled not", 
and "controlled controlled not" [ 1,2]. The con- 
trolled not has two inputs: a, a', and two outputs: b, 
b'. The parameter a' coincides with a, and a is the 
controlled parameter: if a =  1, then b '="not  b", oth- 
erwise b'=b (see Fig. 1 ). The controlled controlled 
not has three lines: a, b, c-,a', b', c'. Here a'=a, b'=b, 
c ' = " n o t  c", i f a = b =  1, otherwise c'=c. These three 
elements are enough to design an universal computer 
[1,2]. 

It is known that a chain of two-level atoms could 
in principal perform these logical operations [ I ]. The 
idea of quantum-mechanical computers has been dis- 
cussed for many years (see, for example, Refs. [3-  
8 ] ). In these previous discussions, the problems of 
constructing a Hamiltonian which describes the log- 
ical operations and the thermodynamics of compu- 
tational processes has been investigated from various 
points of view. Many of  these works were stimulated 
by results of Landauer [ 9 ] who showed that only ir- 
reversible logical operations require dissipation, and 
Bennett [ 10], who showed that dissipation of  free 
energy is absent in the process of computation if one 
does not use irreversible elements. In fact, all ele- 
ments that were discussed in the references above are 
reversible ones. 

A new step in the discussion of quantum com- 
puters was made recently in the work of Lloyd [ 11 ], 
in which a quantum computer scheme is suggested 
involving an array of weakly coupled atoms. For 
computation one applies to the array a sequence of 
electromagnetic pulses. Ref. [ 11 ] considers a one-di- 
mensional array of three types of two-level atoms 
(heteropolymer) ABC ABC ABC..., in which each 
atom possesses a long-lived excited state, and the res- 
onant frequencies oJ A, o9 3 and o9 c are different. The 
light pulses have the form of n-pulses, and transfer 
the atom from the ground state 10) to the excited 

a'aall ill iliilia 
Ulll iliOli lllOI 
armll ll lllOlia 
Ir..41lEiliaial]l 

Fig. 1. "Controlled not": a'=a; if a=0, b'=b;, otherwise b'=not 
b. 

state I 1 ) ,  or vice versa, from I 1 ) to I 0 ) .  The system 
is assumed to have only nearest-neighbor interac- 
tion, which shifts the energy levels of each atom as a 
function of the states of its neighbors. This means that 
each energy level splits into four levels. For example, 
instead of frequency w A one has four frequencies 
o9~o, o9~'1, OJ~o, ~o~l, where oJi~ means that the left 
neighbor (C) is in the state l i ) ,  and the right neigh- 
bor (B) is in the state I k) .  So, we have twelve differ- 
ent frequencies for each complex ABC, as the reso- 
nant frequency of each atom depends on the states of 
its neighbors. It is supposed that all twelve frequen- 
cies are sufficiently different to be distinguished, and 
that the corresponding atoms can be driven selec- 
tively. So, the resonant pulse updates the states of all 
units of a given type as a function of its previous state 
and the states of the neighbors. For example, the pulse 
with frequency OJoAl acts only on the atoms Aol (where 
subscript 01 denotes that left neighbors of atoms A 
are in the state 10), and right neighbors are in the 
state I 1 ) ), and transfers atoms A from the state I 0)  
to the state I 1 ) ,  or from I 1 ) to I 0 ) .  

It is shown in Ref. [ 11 ] that different sequences of 
resonant pulses permit one to load information, to 
process it, and to read-out the information. These 
possibilities are based on the properties of the edge 
atoms, whose frequencies are different from the fre- 
quencies of all other atoms. Consequently, one loads 
the information onto the edge atom of the array. To 
move information along the array one can use se- 
quences of the type 

oiwlt ,otowttwot wtt . ( I . I )  

The result of such a sequence of pulses is shown in 
Fig. 2, where we present all possible initial states of 
the neighboring atoms A and B. It is seen that the 
first pair of pulses changes the states of  A atoms that 
have right neighbors in the excited state indepen- 
dently of the states of the left neighbors. The second 
pair of pulses changes the states of B atoms that have 

Fig. 2. Change o f  the initial states of  two neighbourin$ atoms A 
and B under  the influence of  the sequence ( 1. I ). Asterisk means  
that an atom is in the excited state. 
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their left neighbors in the excited state. Finally, the 
third pair of pulses repeats the action of the first pair. 
As a result, we have an exchange of one information 
bit between the A and B atoms. Note that to move 
information from (or to) the edge atom one has to 
use pulses with the frequency of the edge atom. For 
example, if the edge atom is the A atom, to move in- 
formation to the next atom B one should use the se- 
quence ~,~"A"Bwtow~t ~ ,~"B ,.,A, where ogA is the frequency of 
the first atom when its neighbor is in the excited state. 

As an example of  processing the information in Ref. 
[11 ] a scheme is considered that is based on the 
modified sequence ( 1.1 ), 

ogA t . , A  I . ,B  A A 01,~,xxwtiOgo~ ogtl , (1.2) 

which differs from (1.1) by the absence of a pulse 
with frequency O9~o. I f  in the complex ABC the atom 
C is in the excited state, the result of  ( 1.2) coincides 
with the result of  ( 1.1 ). I f  the atom C is in the ground 
state, the pulse o9~ does not act on atom B, and the 
result of  the action of the sequence (1.2) on the 
neighboring atoms A and B, in fact, coincides with 
the results of  action on these atoms of the sequence 
ogA ..,A ...A 09~, that does not change the states of  A 01 tzd 11 t-oOI 

atoms. So, the sequence (1.2) changes the states of 
the neighboring atoms A and B if and only if the atom 
C is in the excited state. This result is known as the 
Fredkin gate on the triple ABC, with C as a control 
bit [121. 

To read-out the information it is suggested in Ref. 
[ 11 ] to use more complicated systems, namely sys- 
tems with an additional excited state ] 2)  that decays 
quickly to the ground state ] 0) .  To read-out the value 
of a bit one moves this bit to the end of the chain, 
and applies a n-pulse that drives the transition be- 
tween the states I 1 ) and 12 ) of the edge atom. If  the 
edge atom is in the excited state, then it will emit a 
photon whose frequency corresponds to the transi- 
tion between levels 10) and 12 ).  In contrast to the 
previous scheme, this one is irreversible and, conse- 
quently, dissipative because it involves spontaneous 
emission. Because of low photon detection efficien- 
cies, one has to use several copies of  a bit. Later Lloyd 
suggested a reversible scheme to read-out the infor- 
mation using two n-pulses [ 13 ]. According to this 
scheme if, for example, the edge atom is an A atom, 

A A one applies a sequence o91 o90. If  either of  these pulses 
is attenuated, the edge atom is the ground state; if 

either of  the pulses is amplified, then the edge atom 
is in the excited state. Another irreversible dissipa- 
tive process appears in Ref. [ 11 ] in consideration of 
error correction. The error correction considerations 
in Ref. [ 11 ] also require use of  the more complicated 
three-level system. 

2. One-dimensional lsing systems 

The first question of quantum computation is the 
choice of  an appropriate system that can be realized 
as an actual device. In this paper we suggest quantum 
computations using one-dimensional Ising systems 
described by the Hamiltonian 

~ = _ _ 1  ~ i  ( O ' ) [ ~ f " ~ J l ~ Z l ~ ' Z + l )  ' h = l ,  (2.1) 

where af  is the Pauli operator, J is the effective con- 
stant of interaction which can be positive or nega- 
tive, and o9 is the resonant frequency for the effective 
spin when the interaction is absent. We can apply 
Lloyd's schemes for loading and processing of infor- 
mation if we consider a modified one-dimensional 
Ising system with three inequivalent effective spins. 
In this case, we have 

f l = - ~  ~. (og, e f  +d , . ,+ ,e fe f+l ) ,  (2.2) 
i 

where the frequency o9~ takes three values ogA, ogB, and 
ogc. The constant of interaction Jr.,+ 1 also takes three 
values that correspond to the interaction between ef- 
fective spins AB, BC, and CA. 

The eigenfunctions of the Hamiltonian (2.2) rep- 
resent spin states of  the type [ 0011 101 1... ) ,  i.e. some 
of the spins are in the ground state, and the rest are 
in the excited state. For example, if in some state of 
the system the spin B is in the ground state I 0 ) ,  and 
in another state this spin B occupies the level I 1 ),  
and all other spins are unchanged, then the difference 
AE between the energies of  these two states is 

AE= ogB +__jAB +_J aC , (2.3) 

where the upper ( + ) sign at A ~ corresponds to the 
state 10) of the neighboring spin A, and the lower 
( - ) sign at jAB corresponds to the state I 1 ) of this 
spin (the same is true for the sign at jBc and spin C). 
So, we find the following four eigenfrequencies of  the 
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Hamiltonian (2.2) which correspond to inversion of  
one spin B, 

to a =coa  + JAa + J nc ' 

COalo=tOB--J~a + J ac ' 

O)~1 =¢-On- l -JAa- -J  BC , 

t.O~! = 03 a _ j A n  _ j B c .  

(2.4) 

Note that all these frequencies are multiply degener- 
ate. There are analogous expressions for cox and to c.  
We emphasize that the Ising Hamiltonian (2.2) does 
not have off-diagonal terms. Consequently, there is 
no "band problem" for the Ising system. This simpli- 
fies quantum computer considerations for the Ising 
system, compared to those for the heteropolymer 
chain considered in Ref. [ l 1 ]. 

a 

cJ 

O -  

ct 

O -  

b 

Fig. 3. (a) The schematical structure of the -MCl2-chain in the 
ac plane ( see for details Ref. [ 161 ); M means "metal" ( for ex- 
ample, M -- Co); ( b ) the rough sketch of MCI2" 2NCsHs structure 
viewed down along the c-axis. 

3. Magnetic Ising systems 

Before proceeding with consideration of  informa- 
tion transfer in alternating Ising spin systems, we 
briefly review the physical parameters of real one-di- 
mensional Ising systems, mainly following Refs. 
[ 14,15 ]. As an example we shall consider here only 
magnetic systems. There are many substances in 
which real localized spins of paramagnetic atoms or- 
ganize themselves into linear chains. In fact, this oc- 
curs whenever the exchange interaction J between 
spins in a chain is much larger than the interchain 
exchange interaction J'. Of  course, such systems are 
actually three-dimensional. In these systems a mag- 
netic ordering takes place at sufficiently low temper- 
atures T¢ ~J' .  At intermediate temperatures J >  T> Tc 
these systems are in the paramagnetic state, and their 
thermodynamical properties are determined by their 
one-dimensional correlations. In what follows, the 
signs of the values J and J '  are not important for us, 
as the main interaction in our case is the Zeeman in- 
teraction of  the ionic spins with an external dc mag- 
netic field H. Often the reason that such one-dimen- 
sional chains appear is connected with the presence 
of non-magnetic ions or complexes that separate dif- 
ferent chains. As a well-known example of  a one-di- 
mensional system, in Fig. 3 the structure of 
MCI:.2NCsHs [16] is shown, where M means 
"metal". 

We present, as examples, five substances whose 
thermodynamic properties may be successfully de- 

scribed by the one-dimensional Ising Hamiltonian 
with different values J [ 13,14,16-18 ], 

COC12"2H20, J = I 8 K ,  

CoCI2"2NCsH~, J = 9 . 5  K ,  

K3Fe(CN)6,  J - - - 0 . 2 3  K ,  

(NH4)2MnFs, J = - 1 2  K ,  

RbFeCls .2H20,  J = - 3 5  K .  (3.1) 

The question arises, whether the resonant properties 
of real Ising systems could be described as a local in- 
version of spins. The answer is positive. In Refs. 
[17,18] the infra-red transmission was studied in 
COC12"2H20 at liquid helium temperatures, and at 
magnetic field up to 6 T. The authors of Refs. [ 17,18 ] 
observed the local inversion of clusters consisting of 
up to 14 adjacent spins, in the frequency region ~ 30 
cm-  ~ ( -.. 10 t 2 Hz ). When the external magnetic field 
vanishes, H =  0, all these excitations have the same 
frequencies. But for H@ 0 the energy of each excita- 
tion grows linearly with the cluster size. In Ref. [20] 
the authors studied the same crystal at liquid helium 
temperature, and with magnetic field ~ 5 7", but in 
another frequency region 20-50 GHz (i.e...- 1 cm - '  ). 
They observed resonant transitions connected with 
either increasing, or decreasing of the size of the ther- 
mal clusters in adc  magnetic field (see Fig. 4). As in 
the usual magnetic resonance experiments, the mag- 
netic quantum number m changes in experiments 
[20] by unity ( r e - . m _  1 ), and the frequency of res- 
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Fig. 4. lncre~ing and decreasing of the cluster size in the expe~ 
iment [ 20]. 

onance is equal to 7H, where y is the gyromagnetic 
ratio of spins. 

As far as we are aware, Ising systems have been ex- 
perimentally investigated in detail only for homoge- 
neous chains, for which toi=to and Ji=J.  The first 
step in realizing an Ising quantum computer is to cre- 
ate an appropriate Ising chain with two inequivalent 
spins AB AB .... We believe that such binary Ising 
chains could be realized experimentally. There is a 
relatively new class of one-dimensional materials in 
which two different spins alternate regularly along a 
chain [21 ] with either different metal ions, or a metal 
ion and a radical. The purpose in creating systems of 
this kind is mainly connected with designing a bulk 
molecular ferromagnet. In this connection we men- 
tion, for example, the ordered binary chain com- 
pound, CuMnC7H,2N2OIo, with alternating Mn 
(S= ~)  and Cu (S= ½ ) ions [22]. These single crys- 
tals were obtained by slow diffusion of two solutions 
containing Cu and Mn ions over about three months. 
The structure of the bimetallic chain is shown in Ref. 
[ 22 ]. In this crystal one has the so-called "oxamato 
bridges" between the adjacent Mn and Cu ions. These 
bridges provide strong antiferromagnetic interaction 
in spite of the large separation between ions. 

We want to emphasize that for our purposes of 
quantum computations it is important to have two 
alternating g-factors. It is clear that the same ions in 
alternating surroundings can have different reso- 
nance frequencies, and vice versa, different ions can 
have the same frequencies. 

Next, we consider the situation for a binary Ising 
chain with two different frequencies toA and to n. The 
interaction splits each of these frequencies into three, 

to6'o=toA+2J, to~l=to~'0=to ̂  , 

to~l =co A - 2 J .  (3.2) 

Analogous expressions exist for to~. We suppose, for 
example, that to^> coB, and the difference toA__ toB is 
about or exceeds 6J. We suggest using this kind of 
chain in experiments for quantum computations. For 

this application, the first problem is a thorough anal- 
ysis of the technology of creating "binary Ising sys- 
tems" (BIS): AB AB .... 

The parameters of a BIS magnetic Ising system 
must be restricted in order to be a viable candidate 
for quantum computations. In particular, the follow- 
ing inequalities should be satisfied, 

k T < < g # H ,  g # A I t < < J < < g g t t ,  (3.3) 

where #- /~B  = e~ 2mc is the Bohr magneton, g/~AH is 
the width of the line, and g/~= by. (The value o fg  for 
a free electron is g=  2, but in the crystal field g can 
differ from this value. ) The condition kT,~:g/d-I  al- 
lows the unexcited spins to be in the ground state. 
The condition gl~AH << J means that the width of the 
energy-level lines is small in comparison with the 
splitting of levels. Finally, the condition J << #H pro- 
vides the small parameter for weak spin-spin inter- 
action in the system. 

For example, we may take 

T ~ I K ,  H ~ 1 0 T ,  A H ~ I 0 - t T ,  J ~ l K .  
(3.4) 

We note that the usual quantity AH in electronic par- 
amagnetic resonance is of the order 1 0 - 4 - 1 0  -2 T 
[23]. It may appear that the design of a quantum 
computer based on one-dimensional Ising systems 
requires abnormally low temperature, or high mag- 
netic field strength, for device operation. Our opin- 
ion is that such conditions are justifiable, for ad- 
dressing fundamental research problems in quantum 
computation rather than for immediate application. 

Also we note that standard experimental investi- 
gations of magnetic Ising systems typically use sub- 
stances with high values o f J  ( J>  k T ) .  It is important 
to note that for the above quantum computer consid- 
erations the condition J>  k T  is not obligatory. In- 
deed, because the resonant frequency is determined 
by the external magnetic field H, we only need the 
condition J>> g/~AH. An important remaining prob- 
lem is to investigate the resonant and the relaxation 
properties of binary Ising systems that are appropri- 
ate candidates for quantum computer devices. 

4. Loading and reading-out information 

It is clear the BISs can be used for loading infor- 
mation. For this purpose we can use, for example, the 
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sequence of pulses ( I. 1 ) suggested in Ref. [ l 1 ]. To 
read-out the information one can use the sequence of 
two It-pulses suggested in Ref. [ 13 ]. It may be more 
convenient in experiments to read-out the informa- 
tion using a lt/2 pulse. For example, let us consider 
the edge spin, assuming, say, that it is a B spin. To 
read-out the information we can move the bit that we 
want to read-out to the spin A that is a neighbor to 
the edge spin. If spin A is in the excited state, then 
the frequency of the edge spin is toy = to n - J .  To read- 
out the information one can apply n/2 pulse with a 
carrier frequency of to s - J .  If  one detects the photon 
signal of free precession, one can conclude that the 
atom A is in the excited state. After detecting a signal 
one can apply an additional n/2 pulse of  the opposite 
phase to return the edge spin to the ground state. As 
in the scheme described in Ref. [11], use of this 
scheme requires several copies of  the chains, in order 
to detect the signal reliably. 

It is known that the estimation of the maximum 
sensitivity in electron paramagnetic spin resonance 
at normal conditions ( T~ 4 K and H ~  0.3 T)  allows 
detection of a signal from l05 spins [24]. According 
to Ref. [ 24 ], when the external magnetic field grows, 
this number decreases as H -2 until the condition 
k T > g p . H  is satisfied. Consequently, we expect that 
the number of copies required to read-out the infor- 
mation in the Ising systems considered here will be 
mainly determined by the diameter of a laser beam. 

We note that in principle one could use a n pulse 
rather than a n/2 pulse and detect a signal due to this 
pulse. Although this approach would not be conve- 
nient for real experiments, it does show that the pro- 
cess of reading-out may be organized as a reversible 
process. 

BISs could also be used for information process- 
ing. For example, let us consider the BIS system 
ABA... with the edge spin A. Applying to this system 
the sequence of n pulses 

A a toA (4.1) tot tott 

provides an exchange of bits between the first two 
spins A and B if and only if the third spin A is in the 
excited state. This is the BIS Fredkin gate with the 
third spin A as the control unit. Such a BIS Fredkin 
gate could be used as one of the simplest quantum 
logical devices. Consider the following simple exper- 
iment with the BIS Fredkin gate. Let the initial state 

of the whole BIS system be the ground state. We ap- 
ply a pulse with frequency to~ =toA+j .  This pulse 
excites the edge spin A (the first spin). Then, we ap- 
ply pulses with frequencies tototo~oe A which excite the 
second and the third spins. After these sequences of 
pulses, the first three spins are in their excited states. 
Now we derive the edge spin A into the ground state. 
For this, one applies a pulse with frequency co A. To 
realize the open BIS Fredkin gate, we apply the se- 
quence (3.9) which changes the states of the two first 
spins A and B because the third spin A is in the ex- 
cited state. Finally, to read-out the information from 
the second spin B we apply a n/2 pulse with fre- 
quency too A. As the result, after this pulse we should 
observe the signal of free precession. Analogously, we 
can realize this experiment with a closed BIS Fredkin 
gate. For this, we use the same pulses except we omit 
the pulse with frequency toA0. In this case the signal 
of  free precession will not be observed. 

Finally, we estimate the pulse parameters required 
in the scheme just discussed. For H -  l 0 T, the reso- 
nant frequency is about 300 GHz ( ~  10 cm - t  ). In 
such experiments one can use quasi-optical tech- 
niques in the far-infrared spectrum [25]. Suppose 
that the pulse duration z is about l 0 ns. Then, for the 
it-pulse one needs the amplitude of the alternating 
field to be h ~ 1.5 roT. For the "normal" action of a 
n-pulse (i.e. to populate the upper state close to 
100%) there is an additional restriction on AH, 

AH<<h.  (4.2) 

One can take AH~ l0 -4 T, which is still reasonable 
for electronic paramagnetic resonance. Finally, the 
time of the longitudinal relaxation Tt should be longer 
than both the pulse duration and the time between 
pulses z' (we may take z '~  l0 ns, as well). The wide 
distribution of the quantity Tt for 3D ions at liquid 
helium temperature, from l0 las to 1 s [25,26], al- 
lows this scheme to be feasible, in principle, as a re- 
search task. 

5. Conclusion 

Alternating Ising systems in the parameter regime 
discussed here of  possible use for quantum computer 
operations lie in an interesting, as yet sparsely stud- 
ied domain of condensed matter physics. There are 
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many questions as yet unaddressed in this quasi-op- 
tical domain of spin dynamics in the presence of high 
magnetic fields. Moreover, to design a quantum 
computer using the BIS type of Ising system dis- 
cussed here, at least the following problems should be 
addressed. 

( l ) Complete an analysis of the existing Ising sys- 
tems, both magnetic and non-magnetic, and choose 
the most appropriate class of such systems; 

(2) Analyze the technology for creating Ising sys- 
tems to choose a method of designing the proper BISs; 

(3) Perform theoretical, computational and exper- 
imental analysis of resonant and relaxation proper- 
ties of BISs; 

(4) Perform numerical and real experiments for 
loading, processing and reading-out information on 
BISs; 

(5) Analyze more complicated alternating Ising 
systems than BISs, as necessary. 
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